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Abstract. We calculate a temperature-dependent part of the one-loop thermodynamic potential
(and the free energy) for charged massive fields in a general class of irreducible rank 1 symmetric
spaces. Both low- and high-temperature expansions are derived and the role of non-trivial
topology influence on asymptotic properties of the potential is discussed.

1. Introduction

The problem of asymptotic expansions of the one-loop effective potential in Kaluza–Klein
finite-temperature theories with non-vanishing chemical potential has been studied for a long
time by several authors (for a review see [1–3]). The low- and high-temperature asymptotics
in powers ofβ = 1/T , whereT is the temperature of a system, has been evaluated in terms
of integrated heat kernel coefficients, related to the scalar [4–7] and spinor [1–3] Laplacian
acting on a smooth (compact)d-manifold Md without boundary. An extension of this
analysis to a Fermi gas was given first in [8]. The boundary conditions for a curved space
in the thermodynamic system with non-vanishing chemical potential have been considered
in [9, 10]. A finite-temperature analysis was also developed in manifolds with hyperbolic
spatial sections [2, 3, 11–13]. The method of zeta-function regularization in the presence
of the multiplicative anomaly for a system of charged bosonic fields with non-vanishing
chemical potential was reconsidered and actively analysed in [14].

Only recently have the topological Casimir energy [15], the one-loop effective action,
the multiplicative and the conformal anomaly [16, 17], associated with the product of
Laplace-type operators acting in rank 1 symmetric spaces, been analysed. The goal of this
paper is to study the influence of such non-trivial topology of manifoldsMd on the one-
loop contribution to the thermodynamic potential and to the free energy of charged massive
fields. We consider a general class of irreducible symmetric rank 1 Einsteind-manifolds.
Geometric structure on Einstein manifoldsMd is related to an Einstein metricg, for which
the equation Ric(g) = 3g holds, where Ric(g) is the Ricci tensor and3 is a constant.
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Trivial examples of Einstein manifolds are spaces with constant sectional curvature (in
particular, uniform spacesRd , Sd andHd ).

The contents of the paper are the following. In section 2 we review some relevant
information on the spectral zeta function and the one-loop thermodynamic potential
�G(β,µ) related to a non-compact simple split rank 1 Lie groupG. The low-temperature
expansion of the temperature-dependent part of the potential�Gβ (β, µ) and the free energy
are calculated in section 3. In section 4 the explicit form of the high-temperature expansion
of �Gβ (β, µ) is presented. We end with some conclusions in section 5. Finally, appendices A
and B contain a summary of the heat kernel (appendix A) and the zeta function (appendix B)
properties relevant to irreducible rank 1 symmetric spaces.

2. The one-loop thermodynamic potential

In this section general expressions for the thermodynamic potential and the free energy
will be derived. For the sake of completeness we shall present the one-loop contributions
of these thermodynamic quantities for the cases in which the spatial sections are general
irreducible rank 1 symmetric spaces (Einstein manifolds)X ≡ Md of non-compact type.
We recall that a Riemannian manifold(X, g) is a symmetric space if for anyx ∈ X there
exist a group of manifold isometries0x such that0x(x) = x andTx(0x) = −Id(TxX), where
TxX is a tangent space. (An irreducible rank 1 Riemannian symmetric space(X, g) has the
form G/K, whereG is a rank 1 Lie group andK ⊂ G is a maximal compact subgroup
(see, for example, [18, 19]).)

We start with the thermodynamic potential for massive charged scalar fields with a non-
vanishing chemical potentialµ in thermal equilibrium at finite temperature in an ultra-static
spacetime with spatial sector of the formX = G/K. Let 0 ⊂ G be a discrete, co-compact,
torsion-free subgroup. Letχ be a finite-dimensional unitary representation of0, let {λl}∞l=0
be the set of eigenvalues of the second-order operator of Laplace typeL0 = −10 acting
on smooth sections of the vector bundle over0\X induced byχ , and letnl(χ) denote the
multiplicity of λl .

For the ultra-static spacetime with topologyS1⊗X, the elliptic second-order differential
operatorL(µ) is a matrix-valued operator acting on the real and imaginary part of the
complex scalar charged field. It has the formL(µ) = diag

(−(∂τ − eµ)2 + L,−(∂τ +
eµ)2 + L) ≡ diag(O+,O−); to simplify the calculation we takee = 1, wheree is an
elementary charge. The operatorsO± are not Hermitian; in fact, they are normal and their
eigenvalues are complex and read(

2πn

β
± iµ

)2

+ λl + b n ∈ Z. (2.1)

In equation (2.1)b is an arbitrary constant (an endomorphism of the vector bundle over
0\X). We shall also need a suitable regularization of the determinant of an elliptic
differential operator, and we shall make a choice of the zeta-function regularization. The
zeta function associated with the operatorL ≡ L0+ b has the form

ζ0(s|L) =
∑
l

nl(χ){λl + b}−s (2.2)

where ζ0(s|L) is a well defined analytic function for Res > dim(X)/2, and it can be
analytically continued to a meromorphic function on the complex planeC, regular ats = 0.

The canonical partition function can be written as follows:

logZ(β,µ) = −β�G(β,µ) = −Sc[φc, g] − 1
2 log det[L(µ)] (2.3)
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whereφc is a solution, which extremizes the classical actionSc[φc, g]; equation (2.3) defines
the thermodynamic potential�G(β,µ). If one makes use of zeta-function regularization,
one obtainsζ ′0(0|O−) = ζ ′0(0|O+) and

�G(β,µ) = 1

β
Sc[φc, g] − 1

β
ζ ′0(0|O+)−

1

2β
A(O+,O−) (2.4)

whereA(O+,O−) is the related multiplicative anomaly [14]. The explicit form of the
A(L0 + b1,L0 + b2) associated with spacesX listed in equation (A.3) of appendix A, can
be found in [16].

Using the Mellin representation for the zeta function one can obtain useful formulae for
the non-trivial temperature-dependent part�Gβ (β, µ) of the thermodynamic potential (for
details see [3, 14])

�Gβ (β, µ) ≡ �G(β,µ)−�G0 −
1

2β
A(O+,O−)

= − 1

π

∞∑
ν=1

∫
R

eiνβt ζ ′0
(
0
∣∣L+ [t + iµ]2

)
dt

= − 1√
π

∞∑
ν=1

cosh(νβµ)
∫ ∞

0
t−3/2e−ν

2β2/4tω0(t; b, χ)dt (2.5)

= − 1

π i

∞∑
ν=0

µ2ν

(2ν)!

∫
Res=c

ζR(s) 0(s + 2ν − 1) ζ0

(
s + 2ν − 1

2

∣∣∣∣L)β−s ds (2.6)

where

�G0 =
1

β
Sc[φc, g] + ξ (r)(− 1

2

∣∣L) (2.7)

ξ (r)
(− 1

2

∣∣L) = PPζ0
(− 1

2

∣∣L)+ (2− 2 log 2)Resζ0
(− 1

2

∣∣L). (2.8)

In equation (2.5)ω0(t; b, χ) is the heat kernel of an operatorL (see equations (A.1), (A.2),
(A.6) and (A.8) of appendix A); the symbols PP and Res in equation (2.8) stand for the finite
part and the residue of the function at the special point, respectively. The formulae (2.5)
and (2.6) are valid for a charged scalar field. In the case of a neutral scalar field we have
to multiply all results by a factor of12.

Different representations of the temperature-dependent part of the thermodynamic
potential can be obtained by means of equations (2.5) and (2.6). In fact, using equation (A.6)
and (A.7) for the heat kernel in (2.5) we obtain

�Gβ (β, µ) = −
1√
π

∞∑
ν=1

cosh(νβµ)
∫ ∞

0
t−3/2e−ν

2β2/4t

×
[
V

∫
R

e−(r
2+α2)t |C(r)|−2 dr + θ0(t; b, χ)

]
dt. (2.9)

For the sake of generality we shall setb + ρ2
0 ≡ α2, whereα is an arbitrary constant.

Note thatα2 = ρ2
0 andα2 = 0 correspond to the massless and conformal coupling case,

respectively. Taking into account an integral representation for the MacDonald functions
Kν(z):

Kν(z) = 1
2

(
1
2z
)ν ∫ ∞

0
e−t−z

2/4t t−ν−1 dt
(| argz| < π/2 and Rez2 > 0

)
(2.10)
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we get

�Gβ (β, µ) = −2

√
2

π

∞∑
ν=1

cosh(νβµ)

[
V

∫
R
|C(r)|−2

(√
r2+ α2

νβ

)1/2

K1/2

(
νβ
√
r2+ α2

)
dr

+ 1√
2π

∑
γ∈C0−{1}

χ(γ ) tγ j (γ )
−1C(γ )

α√
ν2β2+ t2γ

K1

(
α

√
ν2β2+ t2γ

)]
.

(2.11)

3. The low-temperature expansion

3.1. The thermodynamic potential

Equations (2.5) and (2.6) are useful for the low- and high-temperature expansion of the
thermodynamic quantity [3]. Indeed, in order to specialize equation (2.5) for the low-
temperature case let us recall the asymptotic of the MacDonald functions for real valuesz

andν, namely

Kν(z 7→ ∞) '
√
π

2z
e−z

∞∑
k=0

0
(
ν + k + 1

2

)
0(k + 1) 0

(
ν − k + 1

2

) (2z)−k. (3.1)

As a result we have

�Gβ (β 7→ ∞, µ) ' −
∞∑
ν=1

[
V

νβ

∫
R
|C(r)|−2e−νβ(

√
r2+α2−|µ|) dr

+
√
α

2π

∑
γ∈C0−{1}

∞∑
k=0

χ(γ ) tγ j (γ )
−1C(γ )

(2α)k
(
ν2β2+ t2γ

)k/2+3/4

0
(
k + 3

2

)
0(k + 1) 0

(
3
2 − k

)
×e−α

√
ν2β2+t2γ+νβ|µ|

]
.

(3.2)

Finally, using the explicit form of the Harish–Chandra–Plancherel measure (B.5) in
equation (3.2) after straightforward calculation we get

�Gβ (β 7→ ∞, µ) '
2πCGV

β

∞∑
ν=1

d/2−1∑
l=0

a2l

ν

∫
R
r2l+1e−νβ(

√
r2+α2−|µ|)RG(r) dr

−
√
α

2π

∞∑
ν=1

∑
γ∈C0−{1}

∞∑
k=0

χ(γ ) tγ j (γ )
−1C(γ )

(2α)k
(
ν2β2+ t2γ

)k/2+3/4

× 0
(
k + 3

2

)
0(k + 1) 0

(
3
2 − k

)e−α
√
ν2β2+t2γ+νβ|µ| (3.3)

where

RG(r) =


(
1+ e2πr

)−1
, G = SO1(2n, 1),(

1+ eπr
)−1
, G = SP (m, 1), F4(−20), SU(m,1) for oddm,(

1− eπr
)−1
, G = SU(m, 1) for evenm,

−(2r)−1, G = SO1(2n+ 1, 1).

 (3.4)

The leading terms come from the ‘topological’ part of the thermodynamic potential, related
to the functionθ0(t; b, χ), which is determined by equation (A.8).
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3.2. The free energy

The one-loop free energy can be derived from the thermodynamic potential (3.3) in the limit
µ 7→ 0. Thus the formulae for the free energy can be considered as a particular case of
expressions given for thermodynamic potentials. The low-temperature contribution to the
one-loop free energy has the form

�Gβ (β 7→ ∞, 0) ' 2A

β

d/2−1∑
l=0

a2l

∫
R
r2l+1

[
β
√
r2+ α2− log

(
eβ
√
r2+α2 − 1

)]
RG(r) dr

− 1√
2π

∞∑
ν=1

∞∑
k=0

∑
γ∈C0−{1}

χ(γ ) tγ j (γ )
−1C(γ )

(2α)k−
1
2
(
ν2β2+ t2γ

)k/2+3/4

× 0
(
k + 3

2

)
0(k + 1) 0

(
3
2 − k

)e−α
√
ν2β2+t2γ (3.5)

whereA = πCGV .

4. The high-temperature expansion

For the high-temperature expansion it is convenient to use the Mellin–Barnes representation
(2.6) and integrate it on a closed path enclosing a suitable number of poles. To carry out
the integration first of all we shall consider the simplest case ofG = SO1(2n + 1, 1) in
(B.5).

4.1. The groupG = SO1(2n+ 1, 1)

Taking into account equation (2.6) we recall that the zeta function in a(2n+1)-dimensional
smooth manifold without boundary has simple poles at the pointss = (2n+1)/2−k, k ∈ N,
[20]. The Riemann zeta functionζR(s) has a simple pole ats = 1 and simple zeros at all
the negative even numbers while the function0(s) has simple poles ats = −k, k ∈ N. The
temperature dependent part of the thermodynamic potential can be written as follows:

�
SO1(2n+1,1)
β (β 7→ 0, µ) = − 1

π i

∞∑
ν=0

µ2ν

(2ν)!

∫
Res=c

FSO1(2n+1,1)(s; ν, β)ds (4.1)

where

FSO1(2n+1,1)(s; ν, β) = 2s+2ν−2π−1/20
(

1
2s + ν

)
ζR(s) β

−s

×
[
A

n∑
j=0

a2jα
2j−2ν−s+20

(
j + 1

2

)
0
(

1
2s + ν − j − 1

)
+T0

(
s + 2ν − 1

2
;α, χ

)]
. (4.2)

The meromorphic integrandFSO1(2n+1,1)(s; ν, β) has simple poles at the pointss = 1
(ν ∈ N), s = −2(ν + k) (k ∈ N, k = −1, . . . ,−n − 1) ands = 0 (ν = 1, 2, . . . , n + 1).
Moreover, forν = 0 at s = 0 we have simple and double poles. Thus choosing a contour
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of integration in the left half-plane we obtain the high-temperature expansion in the form

�
SO1(2n+1,1)
β (β 7→ 0, µ) = − A√

π

{ n+1∑
k=1

k−1∑
ν=0

n∑
j>k−1

(−1)j+1−k22k−1a2j

× µ
2ν0(k)0

(
j + 1

2

)
(2ν)! 0(j + 2− k)ζR(2k − 2ν)α2j−2k+2β2(ν−k)

+
[ ∞∑
ν=0

n∑
j=0

22ν−1a2j
µ2ν0

(
ν + 1

2

)
(2ν)!

0
(
j + 1

2

)
0
(
ν − j − 1

2

)
α2j−2ν+1

+
∫ ∞

0
90(t + ρ0+ α;χ) dt

]
β−1

+
n∑
j=0

(−1)j+1a2j
0
(
j + 1

2

)
0(j + 2)

α2j+2
[
γE + log

(
1
2α

2β
)]

+
n+1∑
ν=1

n∑
j>ν−1

(−1)j−ν22ν−2a2j
µ2ν 0(ν) 0

(
j + 1

2

)
(2ν)! 0(j + 2− ν)α

2j+2

}
+ 1

2π

∫ ∞
0
90(t + ρ0+ α;χ)

(
2αt + t2)1/2

dt +O(β2
)

(4.3)

whereγE is the Euler constant,

O
(
β2
) = − A√

π

∞∑
ν,k=0,
n+k 6=0

n∑
j=0

(−1)k+j+1a2j
µ2ν 0

(
j + 1

2

)
22k+1 (2ν)! 0(j + k + 2)

×0(−k) ζR(−2k − 2ν) α2j+2k+2β2(ν+k). (4.4)

At high temperature and even for zero chemical potential ‘topological’ terms give a
contribution to the potential. The high-temperature expansion (4.3) in principal looks quite
similar to the one obtained in [3] forX = H3/0.

For the case of minimally coupled scalar field in manifoldsS1 ⊗ Md we have
α2 = m2+ ρ2

0, whereb = m2, m is a mass of field. For example, whenn = 1, (d = 3), the
leading term of the Laurent series (4.3) has the form−4Aa21π

4/
(
90β4

)
, which is a known

result [7, 9].

4.2. The groupG 6= SO1(2n+ 1, 1), SU(d/2, 1)

ForG = SO1(2n, 1), SU(2p+1), SP (m,1), F4(−20) the integrand in equation (2.6) has the
form

FG(s; ν, β) = ζR(s)β−s
[
Aa(G)0(s + 2ν − 1)

2
W

(
s + 2ν − 1

2
;α2, a(G)

)
+2s+2ν−2

√
π

0

(
s

2
+ ν

)
T0

(
s + 2ν − 1

2
;α, χ

)]
(4.5)



Quantum fields in symmetric spaces 4443

whereW(s;α, a(G)) is given by equation (B.7). Therefore the temperature-dependent part
of the thermodynamic potential is

�Gβ (β 7→ 0, µ) = −a(G)A
∞∑
ν=0

d/2−1∑
m,j=0

aj
µ2ν

(2ν)!
j ! 0(2m+ 2) ζR(2m+ 3− 2ν)

×
j∑
l=m

Kj−l
(
m− l;α2, a(G)

)
(j − l)!

l∏
q=0,
q 6=m

(m− q)−1β2ν−2m−3

−a(G)A[−W (0;α2, a(G)
)

logβ +W ′(0;α2, a(G)
)]
β−1

+a(G)A
d/2∑
ν=1

µ2ν 0(2ν)

(2ν)!

[
U
(
ν;α2, a(G)

)+ γEV (ν;α2, a(G)
)

−V (ν;α2, a(G)
)

logβ + ψ ′(2ν)V (ν;α2, a(G)
)]
β−1

+β−1
∫ ∞

0
90(t + ρ0+ α;χ) dt

+ 1

2π

∫ ∞
0
90(t + ρ0+ α;χ)

(
2αt + t2)1/2

dt +O(β) (4.6)

whereψ(s) ≡ 0′(s)/0(s),

O(β) = −a(G)A
∞∑
ν=0

∞∑
k=1

µ2ν

(2ν)!(2k)!
ζR(1− 2ν − 2k)W

(−k;α2, a(G)
)
β2ν+2k−1 (4.7)

U
(
s;α2, a(G)

) = d/2−1∑
j=0

j∑
l=0,
l<n−1

a2j j !
Kj−l

(
s − l − 1;α2, a(G)

)
(j − l)!(s − 1)(s − 2) . . . (s − (l + 1))

V
(
s;α2, a(G)

) = d/2−1∑
j=0

j∑
l>n−1

a2j j !
Kj−l

(
s − l − 1;α2, a(G)

)
(j − l)!(s − 1)(s − 2) . . . (s − (l + 1))

(4.8)

and

W ′
(
0;α2, a(G)

) = d/2−1∑
j=0

j∑
l=0

a2j j !(−1)l+1

(j − l)!(l + 1)!

[
K′j−l

(−l − 1;α2, a(G)
)

+ 1
2Kj−l

(−l − 1;α2, a(G)
) l+1∑
m=1

1

m

]
. (4.9)

4.3. The GroupG = SU(p, 1)

Finally, for G = SU(p, 1), d = 2p, one gets

�
SU(p,1)
β (β 7→ 0, µ) = �Gβ (β 7→ 0, µ)

−2A
p−1∑
j=0

a2j

[ ∞∑
ν=1

µ2ν0(2ν)

(2ν)!
Jj
(
ν;α2, 1

2π
)+ J ′j (0;α2, 1

2π
)]
β−1

−2A
∞∑
ν=1

∞∑
k=0

p−1∑
j=0

a2j
µ2νζR(1− 2ν − 2k)

(2ν)!(2k)!
Jj
(−k;α2, 1

2π
)
β2ν+2k−1. (4.10)

In equation (4.10)G 6= SO1(2n+ 1, 1), SU(d/2, 1) anda(G) = π/2 has been chosen.
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5. Conclusions

In this paper an extension of previous results to the case in which the chemical potential
for quantum fields in irreducible symmetric spaces of rank 1 is present has been proposed.
In the case of low and high temperature we obtain a generalization of the results discussed
in [1–3].

For the vector (spin 1) field the Hodge–de Rham operator(dδ + δd) acting on the
exact one-forms is associated with the massless operator [−∇µ∇ν + (d − 1)]gµν . The
eigenvalues of the operator areλ2

l + (ρ0 − 1)2 and for the Proca field of massm we find
α2 = m2+ (ρ0− 1)2.

Our results can also be extended to spin-1
2 (fermion) field, for which spin structure on a

manifold has to be taken into account. Note that different spin structures are parametrized
by the first cohomology groupH 1(X;Z2). Asymptotic expansions for the spin-1

2 field can
be obtained using the relation�F (β,µ) = 2�B(2β,µ)−�B(β,µ) [3, 9], where the symbol
F (B) stands for the fermion (boson) degree of freedom.

We hope that the proposed analysis of the one-loop thermodynamic properties of
the potential will be interesting in view of future applications to concrete problems in
quantum field theory at finite temperature, in quantum gravity (see [21]), in multidimensional
cosmological models and in mathematical applications as well.
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Appendix A. The heat kernel

One can define the heat kernel of the elliptic operatorL by

ω0(t; b, χ) ≡ Tr
(
e−tL

) = −1

2π i
Tr
∫
C0

dz e−zt (z− L)−1 (A.1)

whereC0 is an arc in the complex planeC. By standard results in operator theory there
exist ε, δ > 0 such that for 0< t < δ the heat kernel expansion holds

ω0(t; b, χ) =
∞∑
l=0

nl(χ) e−(λl+b)t =
∑

06l6l0
al(L)t−l +O

(
t ε
)
. (A.2)

The following representations ofX up to local isomorphism can be chosen

X =


SO1(n, 1)/SO(n) (I)
SU(n, 1)/U(n) (II)
SP (n, 1)/(SP (n)⊗ SP (1)) (III )
F4(−20)/Spin(9) (IV)

 (A.3)
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wheren > 2. Then (for details see [15])

SO(p, q)
def=
{
g ∈ GL(p + q,R)∣∣gt Ipqg=Ipqdetg=1

}
∗SU(p, q) def=

{
g ∈ GL(p + q,C)∣∣gt Ipq ḡ=Ipqdetg=1

}
∗SP (p, q) def=

{
g ∈ GL(2(p + q),C)∣∣gt Jp+qg=Jp+q

gtKpq ḡ=Kpq

} (A.4)

whereIn is the identity matrix of ordern and

Ipq =
( −Ip 0

0 Iq

)
Jn =

(
0 In
−In 0

)
Kpq =

(
Ipq 0
0 Ipq

)
. (A.5)

The groupsSU(p, q) andSP (p, q) are connected; the groupSO1(p, q) is defined as the
connected component of the identity inSO(p, q), while F4(−20) is the unique real form of
F4 (with Dynkin diagram◦−◦ = ◦−◦) for which the character(dimX− dimK) assumes
the value(−20) [18]. We assume that ifG = SO(m, 1) or SU(q, 1) thenm is even andq
is odd.

Let the data(G,K,0) be as in section 2, thereforeG being one of the four groups of
equation (A.3). The trace formula holds [22, 23]

ω0(t; b, χ) = V
∫
R

dr e−(r
2+b+ρ2

0)t |C(r)|−2+ θ0(t; b, χ) (A.6)

where by definition,

V
def= 1

4π
χ(1) vol(0\G) (A.7)

whereχ is a finite-dimensional unitary representation (or a character) of0, and the number
ρ0 is associated with the positive restricted (real) roots ofG (with multiplicity) with
respect to a nilpotent factorN of G in an Iwasawa decompositionG = KAN . One
hasρ0 = (n−1)/2, n,2n+1, 11 in cases (I)–(IV), respectively, in equation (A.3). Finally,
the functionθ0(t; b, χ) is defined as follows:

θ0(t; b, χ) def= 1√
4πt

∑
γ∈C0−{1}

χ(γ ) tγ j (γ )
−1C(γ ) e−(tb+tρ

2
0+t2γ /(4t)) (A.8)

for a functionC(γ ), γ ∈ 0, defined on0 − {1} by

C(γ )
def= e−ρ0tγ

∣∣ det
n0

(
Ad

(
mγetγ H0

)−1− 1
)∣∣−1

. (A.9)

The notation used in equations (A.8) and (A.9) is the following. Leta0, n0 denote the
Lie algebras ofA,N . Since the rank ofG is 1, dima0 = 1 by definition, saya0 = RH0

for a suitable basis vectorH0. One can normalize the choice ofH0 by σ(H0) = 1, where
σ : a0 7→ R is the positive root which definesn0 = gσ ⊕ g2σ ; for more detail see [15].

Since0 is torsion free, eachγ ∈ 0 − {1} can be represented uniquely as some power
of a primitive elementδ: γ = δj (γ ) wherej (γ ) > 1 is an integer andδ cannot be written
asγ j1 for γ1 ∈ 0, j > 1 an integer. Takingγ ∈ 0, γ 6= 1, one can findtγ > 0 andmγ ∈ K
satisfyingmγ a = amγ for everya ∈ A such thatγ isG conjugate tomγ exp(tγH0), namely
for someg ∈ G, gγg−1 = mγ exp(tγH0). For Ad denoting the adjoint representation ofG
on its complexified Lie algebra, one can computetγ as follows [23]:

etγ = max{|c||c = an eigenvalue of Ad(γ )} (A.10)

in the case ofG = SO1(m, 1), with |c| replaced by|c|1/2 in the other cases of equation (A.3).
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Appendix B. The spectral zeta function

The zeta functionζ0(s|L) converges absolutely for Res > d/2, is holomorphic ins in this
domain, and for Res > d/2

ζ0(s|L) = χ(1) Vol(0\G)
4π

I
(
s;α2

)+ 1

0(s)
T0(s;α, χ) (B.1)

whereα2 = b + ρ2
0 and [15]

I
(
s;α2

) = ∫
R

|C(r)|−2 dr(
r2+ α2

)s (B.2)

T0(s;α, χ) = π−1/2

(2α)s−
1
2

∑
γ∈C0−{1}

χ(γ )j (γ )−1C(γ )t
s+ 1

2
γ K−s+ 1

2
(tγ α)

= 1

0(1− s)
∫ ∞

0
90(t + ρ0+ α;χ)

(
2αt + t2)−s dt. (B.3)

The function90(s;χ) is defined in [24]

90(s;χ) =
∑

γ∈C0−{1}
χ(γ ) tγ j (γ )

−1C(γ ) e−(s−ρ0)tγ (B.4)

for Res > 2ρ0. Thus 90 is a holomorphic function in the1
2 plane Res > 2ρ0 and

admits a meromorphic continuation to the full complex plane. It can be shown that
90(s;χ) = Z′0(s;χ)/Z0(s;χ), whereZ0(s;χ) is a meromorphic suitable normalized
Selberg zeta function attached to(G,K,0, χ) (see [3, 24–30]).

The suitable Harish–Chandra–Plancherel measure is given as follows:

|C(r)|−2 =


CGπrP (r) tanh(πr), for G = SO1(2n, 1),

CGπrP (r) tanh(πr/2), for G = SU(q, 1), q odd,

or G = SP (m, 1), F4(−20),

CGπrP (r) coth(πr/2), for G = SU(m, 1), m even,

CGπP (r), for G = SO1(2n+ 1, 1),

 (B.5)

while CG is some constant depending onG, and where theP(r) are even polynomials (with
suitable coefficientsa2l) of degreed − 2 for G 6= SO(2n+ 1, 1), and of degreed − 1= 2n
for G = SO1(2n+ 1, 1) [3, 15].

For Res > d/2 and forG 6= SO1(m, 1), SU(p,1) with m odd andp even we have
[15]

I
(
s;α2

) = 1
2πa(G)CGW

(
s;α2, a(G)

)
(B.6)

where

W
(
s;α2, a(G)

) = d/2−1∑
j=0

a2j j !
j∑
l=0

Kj−l
(
s − l − 1;α2, a(G)

)
(j − l)!(s − 1)(s − 2) . . . (s − (l + 1))

. (B.7)
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ForG = SU(p, 1) with p even and Res > d/2= p,

I
(
s;α2

) = CGπ[π
4
W
(
s;α2, 1

2π
)+ p−1∑

j=0

a2jJj
(
s;α2, 1

2π
)]
. (B.8)

Finally, for G = SO1(2n+ 1, 1) and Res > (d/2) = (2n+ 1)/2,

I
(
s;α2

) = 2CGπ
n∑
j=0

a2j

∫ ∞
0

r2j dr(
r2+ α2

)s
= CGπ

0(s)

n∑
j=0

a2jα
2(j+ 1

2−s)0
(
j + 1

2

)
0
(
s − j − 1

2

)
. (B.9)

In equations (B.7) and (B.8) the entire functionsKn(s; δ, a) andJn(s; δ, a) are defined for
δ, a > 0 by

Kn(s; δ, a) =
∫
R

r2n sech2(ar) dr(
r2+ δ2

)s (B.10)

Jn(s; δ, a) =
∫
R

r2n+1 cosh(ar) sech(ar) dr(
r2+ δ2

)s . (B.11)
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